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ABSTRACT

Quite a few interesting experiments have been done applying neural
networks to natural language tasks. Without detracting from the
value of these early investigations, this paper argues that current
neural network architectures are too weak to solve anything but toy
language problems. Their downfall is the need for "dynamic inference,"
in which several pieces of information not previously seen together
are dynamically combined to derive the meaning of a novel input. The
first half of the paper defines a hierarchy of classes of connectionist
models, from categorizers and associative memories to pattern transformers
are dynamic inferencers. Some well-known connectionist models that deal
with natural language are shown to be either categorizers or pattern
transformers. The second half examines in detail a particular natural
-language problem: prepositional phrase attachment. Attaching a PP to
an NP changes its meaning, therel-y -'4iuencing other attachments. bo
P attachment requires compositional semantics, and compositionality in
non-toy domains requires dynamic inference. Mere pattern transformers
cannot learn the PP attachment task without an exponential training set.
Connectionist-style computation still has many valuable ideas to offer,
so this is not an indictment of connectionisms's potentialf It is an
argument for a more sophisticated and more symbolic conectionist

/ , ~ approach to language.
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Connectionism and Compositional Semantics

David S. Touretzky'

School of Computer Science

Camegie Mellon University

Pittsburgh. PA 15213

1 Introduction

Natural language is an ideal source of problems for connectionism because the domain is so nch, yet for simple

sentences processing takes place nearly instantaneously. Although natural language understanding obviously requires
inference, interesting results have been obtained with connectionist models which do not perform what I call true
dynamic inference. In the first half of this paper I define a hierarchy of connectionist models, ranging from
categorizers and associative memories through pattern transformers and dynamic inferencers. The second half of
the paper examines a particular natural language problem in detail: prepositional phrase attachment. I will show
that PP attachment is critically dependent on compositional semantics. and that this in turn depends upon dynamic
inference. The search for a connectionist solution to the PP attachment problem must therefore begin with a
satisfying account of dynamuc inference.

2 A Hierarchy of Models

Connectionist models can be organized into a hierarchy of classes based on the complexity of the input/output
pair they use as training data. In increasing power. the classes are: categorizers, associative memories, pattern
transformers, and dynamic inferencers. Even the simplest class of models has interesting properties, such as parallel
operation and use of distributed representations, which we may wish to incorporate into natural language models.

2.1 Categorizers

Categorizers place their input into one of a fixed, disjoint set of categories. They share the following properties:

9 The number of output patterns is fixed, and small relative to the number of possible inputs. There is a unique
output pattern for each of the n categories that must be recognized.

• There are many examples of each category, so each output pattern is encoumtered many times in the training

seL

'An earli' vermon of this paper appeared as "Cmwmactonini and PP Anactwmet" in D. Towmky, G. Hinmn. and T. Sejnowski (eds).
Peocdings of dA 1988 Co n c.r Modls Somer ScA. published by Morgan Kafman.
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* The training set densely samples the space of possible inputs. No portion of the space can be safely neglected

when a categorization task is nontrivial.

The simplest output representation for a neural network categonzer is a set of n-bit vectors with exactly one

bit on in each. In competitive learning models with a winner-take-all layer. this output format is intinsic to the

architecture, but in other models it is merely an option. More complex output patterns can easily be derived from

a competitive model by adding another layer of output uruLi. Each of the winner-take-all units can then produce an

arbitrary fixed output pattern by means of appropriate weighted connections to the new output layer. An example

is Hecht-Nielsen's counter-propagation architecture (Hecht-Nielsen, 1987).

Several natural language problems have been posed as categorization tasks. The NETtalk grapheme-to-phoneme

system (Sejnowski & Rosenberg, 1987), billed as "a model that learns to read aloud." pronounces text by sequentially

processing it in seven-letter chunks. The pronunciation of the middle letter in each chunk is determinex hy

categonzing the entire pattern into one of 55 phoneme classes. Each class has an associated output pattern. 26 bits

long, that codes for phonetic features such as voicing and place of articulation. Although NETtalk appears to be

addressing two highly complex language tasks, reading and speech production, it is really just learning to solve 26

binary categorization problems in parallel. (Note that the 26 problems are not solved independently because the

output units share the same hidden layer.)

Whether a network is a categorizer or a pattern transformer is determined by its input/output behavior, not

its architectare. Back propagation can produce either categorizers or pattern transformers. A network can be

taught to simulate the behavior of a simpler class, e.g., a pattern transformer can simulate a categoizer, but many

architec ures are incapable of implementing the more complex classes. Classic perceptrons, for instance, can only

be categorizers. Also, models that employ a competitive winner-take-all layer, such as ART (Grossberg, 1987), the

Nestor learning algorithm (Reilly et aL, 1982), and counter-propagation with a single winner (Hecht-Nielsen. 1987)

are necessarily limited to categorizaton.

2.2 Associative Memories

Associative memory models such as (Wulshaw, 1981), and recurrent associative networks such as Hopfield nets

(Hopfield, 1982), are really just a special class of categorizers. Consider a hetero-associator that maps input patterns

1, to output patterns 0,. Each stored pair (I , 0i) forms a class. Given an input P that is close to some i, the

associator produces the corresponding 0,. The output pattern 0, thus serves as a name for the class of inputs that

are sufficiently close to 11 that they can evoke Oj.

In an auto-associator the i/o pairs are of form (1j. 11). When the model corrects and completes a partial pattern

r by settling to the nearest Ij, it is classifying the pattern F as belonging to the category I,.

Associative memories differ from categonrzrs in the constraints they place on the categories that can be learned-

A Hopfield net treats inputs that are close in Hamming space as instances of the same class; if a few bits are missing

in an input pattern they can easily be filled in by auto-association. Categorizers built by back propagation aren't
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constrained to teat nearby points as similar. They can use their hidden layers to learn difficult discriminations.

such as panty or the Penzias two clumps/three clumps problem, where the output is critically dependent on the

value of every single input bit. and points close in Hammung space often do not fall in the same class.

On the other hand. backprop nets aren't as well suited as Hopfield nets to reconstructing stored patterns from

a partly corrupted version. In the Hoptield net the stored patterns are energy minima the net will settle into one

of these minima (generally the closest one) from any starting point. So a Hopfield net is predisposed to reproduce

exactly the patterns it was rained on. (This is not an absolute constraint Hopfield nets do exhibit faise memones.)

In contrast. when a backprop net trained on some input/output pairs is given a partially corrupted input it is most

likely to produce a corrupted output, unless it has been explicitly shown how to correct corrupted patterns.

2.3 Pattern transformers

Pattern transformation tasks are more computationally demanding than categorization. They have the following

characteristics:

" The number of output patterns grows exponentially with the size of the input. It is not fixed as in catego-

rization.

" Only a few of the output patterns the networt must produce will be familiar. Most will never have been

encountered in the training set.

The ability to produce correct outputs for novel inputs is known as generalization. In order for the transformation

task to be learnable, the function f that maps inputs to outputs must be inducible (with high probability) from the

training data. See Valiant (1984) for a discussion of the conditions under which this is feasible.

Pattern transformation in neural nets is easiest when simila inputs should produce similar outputs. That is.

given a novel input I that is close to some training exemplar Ij, the network should be required to produce an

0' =f(') that is close to Oj =f(j).

One of the classic uses of pattern transformation in connectionist natural language processing is the Rumelhan

& McClelland (1986) verb learning model, which transforms the phonetic representation of the root form of an

English verb into a phonetic representation of the past tense. The model learns to produce correct regular past tense

forms of novel verbs, and can also handle special cases such as "eat/ate" or "sing/sang". The use of a distributed.

coarse coded representation for the input and output phonetic sequences helped make the correct transformation

function for regular cas easy to induce from the training set.

Perhaps the most interestng application of pattern transformation to natural language is the McCleiland and

Kawamoto (1986) case role assignment model. In this model the input pattern is a representation of the surface

form of a sentence, and the output pattern is a set of fille for four case roles. Words are represented as vectors of

semantic features. The mapping of a surface element is highly dependent on meaning and context. For example.

a surface subject can fill either the Agent role (as in "the boy bro*.e the window"), the Patient role ("the window
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broke"), or the Instrument role ("the hammer broke the window"). The fourth role is called Modifier. an example

is the noun "sauce" in "the pasta with sauce."

For novel sentences that are similar to the training sentences (e.g., train on "the girl hit the boy," test on -the

boy hit the girl"), the McClelland and Kawamoto model correctly infers the case roles of the various consutuents

using a combination of semantic feature and word order information. It also performs lexical disambiguation. e g..

by mapping the pattern for "bat" to either "baseball bat" or "flying bat" depending on context. A finer sort of

discrimination is evident in its handling of "chicken," which may be mapped to either "cooked chicken" or "live

chicken" depending on the case role it fills. Finally, the model makes some interesting generalizations by inventing

new output patterns. Its training set includes sentences involving balls, which have the semantic feature soft. and

sentences about breaking things, where the instrument (such as a hammer) is always hard. When the model is

presented with "the ball broke the window" it outputs a novel feature vector for "ball" with the semantic feature

hard.

The problem with pattern transformers is that they require an unreasonable amount of training data in order to

generalize correctly. When the transformation function to be induced involves very high order predicates (in the

Minsky and Papert Perceptrons sense), so that inputs nearby in Hammmg space do not necessarily result in nearby

outputs, the training set must include almost every possible input/output pair. Two examples are Allen's models

of anaphora resolution and sentence translation (Allen, 1987). These models were both constructed by training a

back propagation network on virtually the entire input space. The language translation model, for example, was

trained on 99% of a set of 3300 English/Spanish sentence pairs generated by a simple context free grammar. It

then showed good (but not perfect) generalization on the remaining 33 sentences.

2.4 Dynamic inferencers

A scheme that requires training on a substantial portion of all possible inputs can neither explain human linguistic

performance nor produce a practical natural language understanding automaton. Training set size is exponential in

the length of the input, and it becomes unmanageable extremely quickly.

The way I propose to get around this problem is by abandoning the idea of mapping the surface level repre-

sentation of a sentence to its meaning in a single parallel step. Instead we need to exploit the compositionality

of language: the property that the meanings of complex inputs are composed from the meanings of simpler ones

(Fodor & Pylyshyn, 1988). We can exploit this property by building a model that combines portons of its input

to produce novel meang structures a intermediate internal states; these then undergo further processing as they

combine with more inputs. We avoid the need to tran the model on a sizable fraction of all possible inputs by

introducing specialized cogniuve primitives that allow it to correctly combine intermediate states never previously

encountered.

The nature of these primitives remains a central question of cognitive science. Two candidates are variable

binding and pointer following (what Newell (1980) calls distal access.) The latter refers to the ability to use a

symbol (a compact mental object) to refer to some concept which, in its full detail, is not compact. Given a symbol
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we must have some way of accessing its meaning, but also. given a concept that is to be composed with others.

we must have some way of generating a symbol that points to it. These symbols are meaningful in their own right.

so that they can function as "reduced description" (Hilnton. 1988).

If this is beginning to look suspiciously like ordinary symbol processing, it may.not be such a bad thing The

compositionality issue has to be addressed. it will not go away. But this does not mean that connectionist netr rks

are reduced to implementing Lisp-like symbol manipulation primitives. Connectionism still has many distinctive

properties that may be important for building natural language understanders. Leanung algonthms that develop

distributed representatons and generalize, flexible matching by parallel constraint satisfaction, and efficient parallel

search are some of the things that differentiate connecuoist models from ordinary Lisp code.

Formally. dynamic inferencers have the following properties:

" Input patterns are sequences of tokens from some vocabulary V. The number of input patterns is exponenual

in the length of the input. i.e.. O(VL).

" Training set size is at most polynomal in V.

" The computational process dynamically brings together two or more pieces of information which have not

been seen together before in order to derive new information. The model therefore exhibits novel intermediate

states in response to novel inputs.

Notice that nothing was said above about the output patterns of a dynamic iferencer. They don't matter it's

the intermediate states that are important. Consider a network with an internal model of a static blocks world scene.

Its only task is to output "yes" or "no" in response to sentences such as "Is the blue block in front of the red

pyramid a large block". This is just a binary categorization task: sentences are placed either in class "yes" or class

"no". But to assure a ,uoexponendal trainig set the problem must be implemented as a dynamuc inference task.

This allows the the meamng of the query to be derived on the fly by composing the meanings of its components,

producing successively more complex internal states. To summarize:

* Dynamic miferencers can produce an exponential number of internal states. corresponding to their exponential

number of possible input patterns.

e The internal states produced for complex inputs are systematically related to those for simpler inputs (com-

positionality property).

e This systematicity is reflected in the structure of the network. through specialized primitives for things like

variable binding and distal access. The actual set of primitives reqired remains an open question.

There aren't yet any connecuonist dynamic inferencers. However Touretzky and Hinton's distributed connec-

tionist production system comes close (Touretzky & Hinton. 1988). It has an exponential number of working

memory states, it dynamically retrieves elements from work memory and uses their components to construct new



states. and it reqwres no training at all. But its version of composauonahty is weak. working memory elements

cannot be combined into more complex elements.

Derthick's oKLONE system (Derthick. 1988) is another close approximation to a dynamic inferencer It

dynamucally combines iformation from its knowledge base with information supplied in a query. Thus combination

is a complex process since parts of the query may conflict with previously stored facts: the network must find a

plausible interpretation that violates as few constraints as possible. iKLONE extensively exploits structuring of

knowledge: concepts have semantic features and am organized into a hierarchy: cono*pts have roles whiose fillers

are other concepts; roles also have semantic features and are organized into a role hierarchy: and the choice of

filiers of a role is governed by value restrctions. However. iKLONE answers quenes in a single parallel annealing.

its internal states do not ge -nosed to produce more complex states.

3 The Preposit Phrase Attachment Problem

To reiterate, the two ma points of this paper are. first, that valuable experiments in natural language understanding

can be done with connecuonist models that are computationally weak. These models are toys, but are interesting

nonetheless because they operate in parallel, are constructed automatically by learning algorithms instead of crafted

by hand, generalize successfully to novel inputs, and use distributed representamns. But the second point is that

implementing a real natural language understander requires more than this. It requires dynamic inference.

To illustrate both points I will discuss in detail a restricted version of an important natural language problem.

determining where to attach a prepositional phrase when there are several nouns available. The version of the

problem considered here is syntactically trvial but semantically rich. Inputs consist of a head noun phrase N.P0

followed by some number of prepositional phrases PP, each of which contains a noun phrase NP,. Noun phrases

consist of a definite article "the" followed by a singular concrete common noun; lexical ambiguity is excluded.. A

typical example is (I):

(1) the car in the junkyard with the dog

Here NP 0 is "the car" and there are two PPs that need to be attached to NPs.

3.1 Syntactic constraints on attachment

An inviolable constraint of English is that PPs may only attach to NPs that precede them. i.e., the arrows showing

attachment may n= to the left but not to the right. Obviously then, in (1) PPI can only attach to NPo. But PP.

("with the dog") can attach to either NPo or NP1 . A second, weaker constraint on attachment is that in the absence

of other influences, PPs prefer to attach to the nearest NP to their left. So the preferred attachment for (1) is (2a),
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but (2b) is aLs legal, and might be preferred in some contexts

(2a) the car in the junkyard with the dog

(2b) the car in the junkyard with the dog

Since the first PP of (2a) attaches to NP0 and the second PP attaches to NP1. we call (2a) a 0-1 attachment structure.

(2b) is a 0-0 attachment structure. We can shift the attachment of "the dog" from "the junkyard" to "the car" by

adding a third PP. as in (3):

(3) the car in the junkyard with the dog on the hood

The only reasonable place to attach "on the hood" is "the dog." Since "on the hood" makes an implicit part-of

reference to the car. attaching it to the dog ties the dog more strongly to the caz than to the junkyard, overriding

the nearest-left-neighbor attachment preference.

The most important syntactic constraint on PP attachment is the no-crossing rule, which prohibits lines of

attachment from crossing as in (4).

(4) the man with the dog in the picture on the leash

The no-crossing rule is a strong consint, but it can sometimes be overridden by semantic considerations. as

in this example from Wendy Lehnert (personal communicanon):

(5) John saw the girl with the telescope in a red dress.

Attaching "the dress" to "the girl" prevents "the telescope" from attaching to the verb "saw". People are therefore

forced either to attach the telescope to the girl (reluctantly, since it fits much better with "saw"), or else violate

the no-cro ng cointraint in order to pair "gird" with "dress" and "saw" with "telescope". In the latter case they

charaerze the senwnce as poorly worded, indicaing that they are aware some gramnaical constraint is not being

obeyed.

A third possibility would be to attach "in a red dress" to John. but this is ruled out for cultural reasons. (Speakers

prefer to violate the no-crossing constraint rather than the "no cross-dressing" constraint)
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NP2

-- I NPI

NPO NP0  P

NPo PPl PP2 PP3 PP 4  Inputs from

semantics

Figure 1: A connecuonist network whose stable states correspond to legal PP attachments.

3.2 PP attachment as a competitive phenomenon

The competitive nature of the attachment problem can be captured in a simple connectionist network as shown in

Figure 1. The ith column of units represents the alternatives for attaching PP, to any of the i preceding NPs. In the

figure. the presence of a PP in position i feeds an excitatory stimulus to all the units in column i via the vertical

line with associated branches. Inhibitory connections between a column's units form a winner-take-all network that

enforces the constraint that the PP may attach to only one NP. The no-crossing rule is implemented by inhibitory

connections between units in different columns. A slightly lower threshold (indicated by the double line) for the

topmost unit in each column produces a weak nearest-left-neighbor attachment preference. Semantic constraints

supplied by other modules provide external input, either excitatory or inhibitory, as shown in the bottom nght corner

of the figure.

A version of this network has been simulated as an interactive activation model using equations borrowed from

McClelland's Jets and Sharks model (McClelland. 1981). The network prefers simple left attachment structures

such as 0-1-2. but will choose other structures if semantics warrant it. With a strong enough semantic influence it

can be made to violate the no crossing rule.
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4 The Semantics of Attachment

The competitive attachment network handles syntactic constraints, but it says nothing about how semantic constraints

are to be derived. Getting the semantics right, even for this very limited form of the attachment problem. is difficult

4.1 Naive associationism

Perhaps the simplest approach to attachment semantics is to rely on an abstract "strength of associaton" between

pairs of NPs. Consider these examples:

(6a) the car with the dog in the cage

(6b) the car with the dog in the garage

The preferred attachment structure for (6a) is 0-1; for sentence (6b) it is 0-0. A black box that predicts the

strengths of association between pairs of NPs can solve this attachment problem, as shown in Figure 2. The black

box can be created by back propagation learning, If concepts are represented as feame vectors, then presumably

the black box could generalize from a sufficiently large training set to handle slightly novel examples, e.g., if it

learns that "dog" associates with "garage" with a strength of 0.2- it might predict a similar value for "cat".

4.2 Non-compositional semantics

The reason this associanonist approach is deemed naive is that it completely ignores the semantics of the relationship

being expressed between the two NPs. Naive associationism therefore gets the following attachment problem wrong:

(7) the car with the dog on the hood

Hoods associate far more stiogly with cars than with dogs, but it's not the car that's on the hood in (7). One

way to fix this is to train the black box on NP-PP pairs rather than NP-NP pairs. This reqmres a traiuing set

several times large than before, since each preposition must be treated separately. The output of the black box will

now be a measure of plausibility or acceptability, e.g., "car on hood" would be rated very low because it violates

physical constraints, while "dog on hood" would receive a moderate rating because it is an acceptable physical

state, although not a common one.

The black boxes are pattern transformers: they map NP-PP pairs into the unit interval. The competitive

attachment net is even simper, it has a small, fixed number of output states, and is basically doing categorization.
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the car with the dog in the garage

Box Box

0.2

0.9

PP2

Figure 2: Solving attachment with a black box associator.

Wendy Lehnert is pursuing a variant of the black box approach in the CIRCUS system. She trins a separate

black box plausibility estimator for each distinct prepositional sense. This frees the networks from having to

determine the intended sense based on the two NPs. and should lead to better generalization behavior as a result

4.3 Towards a compositional semantics

I call the black box approach that takes prepositions into account "non-compositional semantics." because it still

ignores the fact that attaching a PP to an NP can change the meaning of the NP. This can in turn affect other

attachments. In (3) for example. attaching "on the hood" to "the dog" gives the dog an implicit part-of reference

to the car this causes "with the dog on the hood" to attach to car rather than junkyard. Recognizing the pan-of

reference in "on the hood" is not enough. the network must transfer that property to "the dog" as a result of the

atachment.

A more slking example of the effects of compositionality is (8). We can easily put the dog on the hood or in

the car: a black box will happily accept either NP-PP pair in isoltion. But the dog can't be in both places at once

because in order to be on the car's hood he must be outside it. As soon as we actually put the dog on the hood.

he can no longer go in the car.

(8) the dog on the hood in the car

In the competitive attachment net. the result of attaching "on the hood" to the dog is represented by activity

in a single unit, the PPI-to-NPO unit. To actueve composinonality, the attachment must result in something much

more complex: the network must somehow envision the dog as being on the hood. and thereby in a certain physical
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relationslup to the car. so that when it tries to put dog-on-hood inside the car it detects a spatial violation. This is

the essence of compostonality: the dog composed with "on the hood" becomes a different object, with different

properties than the dog in isolation.

A network with compositional semantics would require expertise in a variety of semantic primitives, such as

spatial relations, pan-of relations, and accompaniment, in order to know how to compose the meaning of a complex

NP from the meanings of simpler NP and PP components. I am not aware of any existing connectionist architecture

(other than Nature's own) that can solve this problem.

4.4 Further observations on attachment

Long PP chains often correspond to spatial paths that start with a local context and move to global one. For

example, in (9) the reader can picture a path from the book outward to the street.

(9) the book on the shelf in the den in the house at the end of the suee

The longer a string of PPs. the greater the pressure to view it as a path of some sort, which implies a simple nearest-

left-neighbor attachment structure. Due to limited cognitive capacity, people are unable to handle more complex

structures when the PP chains are long, just as they are unable to handle deeply center-embedded sentences. One

exception to the nearest-left-neighbor convention for paths is that the last PP can oFuonally attach to the head NP if

it describes the head rather than participates in the path. !,n example is (10a), which has a 0-1-2-3-4-0 attachment

structure. Normally, however, one prefers (10b), whose structure is 0-0-2-3-4-5.

(10a) the book on the shelf in the den in the house at the end of the street on cockatoos

(lOb) the book on cockatoos on the shelf in the den in the house at the end of the steet

5 Relaxing the Exclusivity Constraint

Up to now we have assumed that each PP attaches to exactly one of the NP's to its left. When sentences are drawn

as parse arees this is a strict requirement; otherwise the result wouldn't be a tree. But parse rees are syntactic

descriptions; attachment is a semantic phenomenon. Example (3) suggests strongly that attachment relationshups

between NP's ar more complex than syntax acknowledges. To derive the meaning of (3). the hood must participate

in two relationships. The PP "on the hood" is attached to the dog, but "hood" must also attach to "car" (by an

inferred pan-of relation) in order to understand it as a reference to the car, indicating that the dog is on the car.

Likewise, the attachment of "in the junkyard" is not exclusive. Besides describing the car, it has an implicit

secondary attachment to the dog, since the dog is where the car is.

One of the important contributions connecuonsm can make to natural language understanding is to encourage

fuzier but richer representations. A connectionist network that could simultaneously represent all the attachment

relations in a phrase, both primary and secondary, would be expressing much more of the meaning of the sentence
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than an exclusive attachment diagram like (3) permits, Rich, fuzzy representatons are harder to program. but they

are manageable if the programming is done by learning algorithms instead of human experinenters.

6 Discussion

There are several approaches one might take toward solving PP attachment with a more sophisucited network than a

pattern transformer. One way would be to use recurrent networks to build up represertations for sentences one word

at a nine. This idea has been pursued by St. John & McClelland (1988) for a much simpler sentence processing

task, and also by Allen (1988). But attachment decisions often depend on later words, so the network would have

to maintain a representation of the ambiguities in a sentence until it had seen enough of the input to settle on the

correct attachment structure. Also, recurrent nets are still very simple architectures. They require huge amounts of

traimng data to learn to recognize and exploit regularity, since they must build all their representational machinery

from scratch using iterated pattern transformations. A true dynamic inferencer would start out with primitives like

variable binding and distal access already in place; it would not have to construct them via extensive training.

Another approach to attachment might be to build a frame-like connectionist representation for concepts, as

in DUCS (Touretzky & Geva, 1987). Attachments would be handled as slot fillers. For example, "dog on hood"

would be represented by frames for dog and hood, the dog frame would have a slot containing a pointer to hood,

and the slot name would include semantic features like "physical contact" and "supports from below". (In DUCS

slot names are not discrete symbols; they are feature vectors.) One could build black boxes for reasoning about

various primitive semantic relationships between frames, such as spatial, part-of, and support relations. These black

boxes would indicate the effects of particular attachments by computing feature vectors for the slots to be added to

each frame. We could then develop a competitive architecture for choosing the best attachment based on plausibility

ratings. The result of malang an attachment would be a modified frame which goes on to participate in further

attachments, just as in a conventional symbol processing solution. The drawback to this approach is that we do

not want to have to separately enumerate all possible attaehments, rank order them, choose the best, and iterate; it

leads to the combinatorial problems that plague conventional symbol processors.

In conclusion, I want to affirm that natural language understanding does require something like symbol process-

mng. Connectionism makes stro g, interesting suggestions about the nature of these symbols and the mechanisms

that manipulate them. It offers flexible matching via parallel constraint satisfaction; fast associative retrieval; and

learning algorithms that construct distributed representations and generalize to novel cases. These models also

perform compositional search, i.e., rather than representing alternative items as separate, discrete entities (combi-

natonally explosive), they exist simultaneously, with overlapping representations, and they interact competitively.

An example is the way rule matching and variable binding behavior emerges from simulated annealing in DCPS

(Touretzky & Hinton, 1988).

We should not be discouraged by the limited ability of of weak connectonist models like categorizers and

pattern transformers to handle symbol processing tasks. Nor should we abandon connectionist representations and

retreat to Lisp code. Let us continue to explore the new tools connectionism has to offer, while acknowledging that
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ultimately dynamic inferencers, not simple pattern transformers. will be required to solve natural language
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